Two-Column Proofs

1. Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Given: $\overline{YX} \cong \overline{WX}$

ZX bisects ∠YXW

Prove: $\overline{YZ} \cong \overline{WZ}$

Statement	Reason
1. $\overline{YX} \cong \overline{WX}$	1.
2. ZX bisects ∠YXW	2.
3. ∠YXZ≅∠WXZ	3.
$4. \ \overline{XZ} \cong \overline{XZ}$	4.
5. $\Delta YXZ \cong \Delta WXZ$	5.
6. $\overline{YZ} \cong \overline{WZ}$	6.

Choose a reason from this list:

Definition of angle bisector

Definition of congruent triangles or CPCTC

Given

Given

Reflexive property of congruence

Side-Angle-Side congruence

2. Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Given: $\overline{AD} \cong \overline{BC}$

 $\overline{AB}\cong\overline{DC}$

Prove: $\overline{AD} \| \overline{BC}$

Statement	Reason
1. $\overline{AD} \cong \overline{BC}$	1.
2. $\overline{AB} \cong \overline{DC}$	2.
3. $\overline{AC} \cong \overline{AC}$	3.
4. $\Delta CAD \cong \Delta ACB$	4.
5. ∠DAC ≅ ∠BCA	5.
$6. \ \overline{AD} \ \overline{BC}$	6.

Choose a reason from this list:

Definition of congruent triangles

Given

Given

If alternate interior angles are congruent then the lines are parallel.

Reflexive property of congruence

Side-Side congruence

3. Complete the following proof by filling in each statement. Remember to mark all given information on the diagram.

Given: ABCD is a parallelogram

Prove: $\triangle ABE \cong \triangle CDE$

Statement	Reason
1.	1. Given
2.	2. In a parallelogram, opposite sides are congruent.
3.	3. In a parallelogram, diagonals bisect each other.
4.	4. In a parallelogram, diagonals bisect each other.
5.	5. Side-Side-Side congruence

Choose a statement from this list:

 $\overline{AE} \cong \overline{EC}$ ABCD is a parallelogram $\overline{DE} \cong \overline{EB}$ $\Delta ABE \cong \Delta CDE$ $\overline{AB} \cong \overline{DC}$

Lesson Plan: Different Methods of Proof

Page 3

4. Fill-in the statements and reasons for the following proof.

Given: $\overline{DE} \| \overline{AV} \|$

 $\Delta DAV \cong \Delta EVA$

Prove: DAVE is an isosceles trapezoid

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Possible Statements	Possible Reasons
DAVE is a trapezoid	Given
$\overline{\mathrm{DA}}\cong\overline{\mathrm{EV}}$	Definition of isosceles trapezoid
DAVE is an isosceles trapezoid	Given
$\Delta DAV \cong \Delta EVA$	Definition of trapezoid
$\overline{ m DE} ig\ \overline{ m AV}$	Definition of congruent triangles

Lesson Plan: Different Methods of Proof

Page 4

5. Complete the following proof.

Given: \overline{MR} is a diameter of \bigcirc O

 $\overline{AR}\cong\overline{MK}$

Prove: $\Delta MAR \cong \Delta RKM$

Statement	Reason
1. MR is a diameter of ⊙ O	1.
2. MAR and MKR are semicircles	2.
3. ∠MAR and ∠MKR are right angles	3.
4. ∠MAR ≅ ∠MKR	4.
5. $\overline{MR} \cong \overline{MR}$	5.
6. $\overline{AR} \cong \overline{MK}$	6.
7. Δ MAR $\cong \Delta$ RKM	7.

Choose from this list of reasons.

An angle inscribed in a semicircle is a right angle.

All right angles are congruent

Definition of a semicircle

Given

Given

Hypotenuse-Leg Congruence

Reflexive property of congruence

Lesson Plan: Different Methods of Proof

Page 5

Answers:

1.

- 1. Given
 - 2. Given
 - 3. Definition of angle bisector
 - 4. Reflexive property of congruence
 - 5. Side-angle-side triangle congruence
 - Definition of congruent triangles 6.
- 2. 1. Given
 - 2. Given
 - 3. Reflexive property of congruence
 - 4. Side-side-side triangle congruence
 - 5. Definition of congruent triangles
 - 6. If alternate interior angles are congruent then the lines are parallel.
- 3. 1. ABCD is a parallelogram
 - 2. $AB \cong DC$
 - 3. $\overline{AE} \cong \overline{EC}$
 - Note: lines 3 and 4 are interchangeable 4.
 - 5. $\triangle ABE \cong \triangle CDE$

4. Statement

$1.\overline{DE} \| \overline{AV}$

- Reason
- 2. DAVE is a trapezoid
- 3. $\Delta DAV \cong \Delta EVA$
- 4. $\overline{DA} \cong \overline{EV}$
- 5. DAVE is an isosceles trapezoid

1. Given

- 2. Definition of trapezoid
- 3. Given
- 4. Definition of cong. tri.
- 5. Definition of isosceles trapezoid
- 5. 1. Given
 - 2. Definition of a semicircle
 - 3. An angle inscribed in a semicircle is a right angle
 - All right angles are congruent 4.
 - 5. Reflexive property of congruence
 - 6. Given
 - 7. Hypotenuse-Leg Congruence

Lesson Plan: Different Methods of Proof Page 6